Investigation of Subterranean Fuel Vapor Extraction and Destruction Using a Diesel Engine: Phase II

INTERIM REPORT TFLRF No. 366

by

Matthew E. Schulman

Karl E. Stoecklein

U.S. Army TARDEC Fuels and Lubricants Research Facility (SwRI)
Southwest Research Institute
San Antonio, TX

for

U.S. Air Force Center for Environmental Excellence Installation Excellence Worldwide Directorate Brooks City-Base San Antonio, TX

Under Contract to

U.S. Army TARDEC
Petroleum and Water Business Area
Warren, MI

Contract No. DAAE-07-99-C-L053

Approved for public release; distribution unlimited

June 2003

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DTIC Availability Notice

Qualified requestors may obtain copies of this report from the Defense Technical Information Center, Attn: DTIC-OCC, 8725 John J. Kingman Road, Suite 0944, Fort Belvoir, Virginia 22060-6218.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.

Investigation of Subterranean Fuel Vapor Extraction and Destruction Using a Diesel Engine: Phase II

INTERIM REPORT TFLRF No. 366

by

Matthew E. Schulman
Karl E. Stoecklein
U.S. Army TARDEC Fuels and Lubricants Research Facility (SwRI)
Southwest Research Institute
San Antonio, TX

for

U.S. Air Force Center for Environmental Excellence Installation Excellence Worldwide Directorate Brooks City-Base San Antonio, TX

Under Contract to

U.S. Army TARDEC
Petroleum and Water Business Area
Warren, MI

Contract No. DAAE-07-99-C-L053

Approved for public release; distribution unlimited

June 2003

Approved by:

Edwin C. Owens, Director

U.S. Army TARDEC Fuels and Lubricants

Research Facility (SwRI)

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarter Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE	2. REPORT DATE June 2003	3. REPORT TYPE AND DAT June 2001 - June 2003	ES COVERED										
4. TITILE AND SUBTITLE Investigation of Subterranean I Engine: Phase II	Fuel Vapor Extraction and Des	truction using a Diesel	5. FUNDING NUMBERS DAAE-07-99-C-L053 WD 7										
6. AUTHOR(S) Schulman, M. E. & Stoecklein,	K. E.												
	TION NAME(S) AND ADDRES d Lubricants Research Facility (,	8. PERFORMING ORGANIZATION REPORT NUMBER TFLRF No. 366										
9. SPONSORING/MONITORING U.S. Army TACOM U.S. Army TARDEC Petroleum and Water Busines Warren, MI 48397-5000	Installation Excellen	or Environmental Excellence ce Worldwide Directorate	10. SPONSORING/ MONITORING AGENCY REPORT NUMBER										
11. SUPPLEMENTARY NOTES													
12a. DISTRIBUTION/AVAILAE Approved for public release; d			12b. DISTRIBUTION CODE										

13. ABSTRACT (Maximum 200 words)

This project aims to remediate fuel spills by extracting hydrocarbon vapors from contaminated earth, and burning them in a diesel engine. The diesel engine destroys hydrocarbons more effectively than spark-ignited units currently in use, uses less fuel, and uses fuel commonly available on Air Force installations. A surplus diesel-powered air compressor was fitted with a torque measurement device and other measurement and control mechanisms for the project. The torque sensor's data was correlated to previously acquired data, with blower pressure used to gauge engine load. Testing using three different hydrocarbon gases in various concentrations to simulate well gases, at a variety of engine speed and load conditions, investigated how the engine would behave in actual use. Limitations were identified in terms of the concentration of gaseous fuel, hydrocarbon destruction efficiency and the fuel required. Further testing with intake air throttled, to simulate the pumping work the engine will have to perform when attached to a well, showed that the engine will run safely and continue to effectively destroy hydrocarbons so long as sufficient oxygen is inducted, either from the well or from fresh air. Conclusions from these data are presented, and recommendations for future testing are offered.

14. SUBJECT TERMS Subterranean Fuel Vap Diesel Compres	oor Extraction and Dest	ruction	15. NUMBER OF PAGES
Diesei Compres	Sion-ignition	_	16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT

EXECUTIVE SUMMARY

Problems and Objectives: Environmental and health hazards posed by soil contamination resulting from underground fuel tank leakage and spillage at U.S. Air Force bases have created a need for cost-effective methods of removing volatile and combustible compounds from subterranean soil. Following removal of as much liquid-state contaminant as possible from a site, the next step in the clean-up process is further removal of contaminant in gaseous form as it evaporates from the saturated soil. One method employed is to bore a well, insert a pipe into the contaminated soil and route the vapors into the intake of a running engine for combustion.

Current engines used for this task are spark-ignited automotive models using propane or natural gas as supplemental fuel during startup and lean vapor conditions. The purpose of this project is to investigate whether a compression-ignition (CI) diesel engine could perform the same function, perhaps increasing efficiency, durability and reliability.

Importance of Project: Continuous operation of an engine for this purpose can result in significant maintenance cost over time. The inherently sturdier design of compression-ignition engines predicts greater durability and a longer life cycle between rebuilds. Other important advantages that a CI engine may offer in this application are the capability to operate at leaner air-fuel ratios and the ability to use readily available JP-8 as a supplemental fuel instead of bottled gases. Using a liquid fuel could also reduce the requirement for refueling, since a larger tank could be used, thereby reducing the associated labor costs.

Technical Approach: A small diesel engine obtained from Air Force surplus inventory was equipped for operation as a pre-mixed vapor dual-fuel test platform. Propane, butane and pentane in various concentrations were used as surrogate gases to simulate fuel vapors found in a typical well site. The engine was operated at various steady state speed and load conditions while the gas to air ratio in the intake air stream was incrementally increased. At each test point, the cylinder pressure was monitored for indications of potentially damaging knock, and parameters such as fuel and air consumption rates and engine temperatures were recorded.

Accomplishments: Data was acquired at a wide range of engine speed and load conditions, using different concentrations of the hydrocarbon gases, to investigate and describe how the engine will operate in actual use at a well site. Further testing examined how the engine would operate with the intake throttled, to simulate the pumping work required to extract the gases from a well. The operating conditions were defined, in preparation for a field test in the following project phase.

Military Impact: The results of this limited study show promise for the possibility of using diesel engines in the task of removing and destroying fuel vapors from underground contamination sites. If the concept ultimately proves practicable through further investigation, it could potentially increase the effectiveness and reliability of engine-based ground vapor removal systems while simultaneously reducing the maintenance costs associated with them.

FOREWORD/ACKNOWLEDGMENTS

This work was performed by the U.S. Army TARDEC Fuels and Lubricants Research Facility (TFLRF) located at Southwest Research Institute (SwRI), San Antonio, Texas, during the period June 2001 through June 2003 under Contract No. DAAE-07-99-C-L053. The work was funded by the U.S. Air Force Center for Environmental Excellence/Installation Excellence Worldwide Directorate, Brooks City-Base, San Antonio, Texas. The project was administered by the U.S. Army Tank-Automotive RD&E Center, Petroleum and Water Business Area, Warren, Michigan. Mr. Luis Villahermosa (AMSTA-RBFF) served as the TARDEC contracting officer's technical representative. Mr. Jerry Hansen (AFCEE/IWE) served as the project technical monitor.

TABLE OF CONTENTS

Sec	<u>ction</u>	<u>Page</u>
1.0	BACKGROUND	1
2.0	OBJECTIVES	1
3.0	EXPERIMENTAL APPROACH 3.1 Setup Modifications 3.2 Testing Procedures 3.3 Problems Encountered	2 6
4.0	RESULTS 4.1 Upper Limit of Gaseous Fuel Ingestion 4.2 Destruction Efficiency 4.3 Fuel Required 4.4 Throttled Operation	
5.0	CONCLUSIONS	16
6.0	RECOMMENDATIONS	
AP	PPENDIX A: Raw Data	
	LIST OF ILLUSTRATIONS	
	gure	Page
	Original Coupling (top view)	
2.	Torque-Sensing Coupling (side view)	
	Detail of Torque Sensor	
 4. 5. 	Blower Outlet Pressure Correlated to Engine Torque Immersion Heater	
 6. 	Original Setup	
	HC Destruction Efficiency by Load Applied	
9.	Additional Liquid Fuel Required for Destruction Efficiency	
	Air Flow vs. Intake Manifold Pressure, Engine Throttled	
	HC Destruction Efficiency vs. Intake Manifold Pressure	
	LIST OF TABLES	
<u>Tal</u>	<u>ble</u>	<u>Page</u>
1.	Test Conditions	7
2.	Vapor Destruction Data Using Pentane	11

ACRONYMS & ABBREVIATIONS

AFCEE U. S. Air Force Center for Environmental Excellence

bhp Brake Horsepower
CI Compression Ignition
CO Carbon Monoxide
CO₂ Carbon Dioxide

ERT Environmental Restoration Team

ft-lb_f Foot-pound(s) (force)
GC Gas Chromatograph
HC Hydrocarbons(s)
kPaa Kilopascals (absolute)

lbm Pound mass

LFE Laminar Flow Element ppt parts per thousand

psig Pound(s) per square inch (gauge)

PPM Parts Per Million RPM Rotation(s) per minute

SI Spark Ignited

SwRI Southwest Research Institute

TARDEC Tank-Automotive Research Development and Engineering Center

TACOM Tank-Automotive Armaments Command

TFLRF U.S. Army TARDEC Fuels and Lubricants Research Facility

T/p Torque/pressure

TVH Total Volatile Hydrocarbons

1.0 BACKGROUND

Over a period of many years, leakage from underground fuel storage tanks and other sources has contaminated the ground soil sites at many US Air Force bases worldwide. The common technique used for cleanup at these locations is to drill into the contaminated soil and extract as much liquid waste as possible. Following removal of the majority of the liquid fuel, the remainder is extracted in vapor form with the aid of an internal combustion engine adapted to burn the vapors as fuel. The extraction unit currently in use has a spark-ignited (SI) automobile engine that serves as both a vapor "pump" and a means of vapor destruction, with propane or natural gas serving as a supplemental fuel during startup and lean conditions.

In order to obtain increased efficiency, durability and reliability in these engine-based extraction units, the Air Force has contracted Southwest Research Institute (SwRI) to investigate the feasibility of using compression-ignition (CI) engines in place of the SI automobile engines now employed. An engine utilized in this role would operate similarly to a dual-fuel natural gas/diesel unit, using distillate fuel as a pilot to ignite the extracted gas charge.

2.0 **OBJECTIVES**

The initial phase of testing demonstrated that the basic concept of burning pre-mixed gaseous fuel vapors in a diesel engine using liquid fuel as an ignition pilot is indeed feasible. It has been shown that the combustion of a gaseous fuel increases as engine load increases. It was found that under significant loading conditions, the pilot fuel amount can be reduced to approximately 20% of the total fuel requirement, assuming the fuel vapors are of high enough concentration to sustain engine operation.

For reasons of practicality and availability, first phase testing used propane gas as a surrogate to simulate well vapors. With the knowledge gained from that testing, the

second project year seeks to develop the concept using gases that more closely approximate the molecular weight and composition of typical well vapors.

Work performed in Phase II incorporates the following additional items to further determine concept feasibility:

- Measurement of engine load at test points to better facilitate duplication of laboratory conditions in future field experiments.
- Exhaust emissions analysis, including evaluation of hydrocarbons, smoke, CO and CO₂ concentrations.
- Mapping of quantitative gas consumption rates and efficiencies.
- A throttling experiment to examine the effects of engine intake air restriction, as would be seen when installed at a well site.

3.0 EXPERIMENTAL APPROACH

3.1 Setup Modifications

In order to determine the load applied to the engine during testing, a novel torque-sensing instrument was installed in the coupling between the engine and the roots blower. Figure 1 below shows the coupling that was on the cabin pressurization unit when received at SwRI. Figure 2 below shows the torque-sensing coupling installed in its place. Comparing the two views reveals that it was necessary to remount the blower farther from the engine in order to accommodate the additional equipment. Installation of the instrument included design and fabrication of flanges to mate to the flywheel and blower, careful shaft alignment of the components, and integration into the cell's data acquisition system.

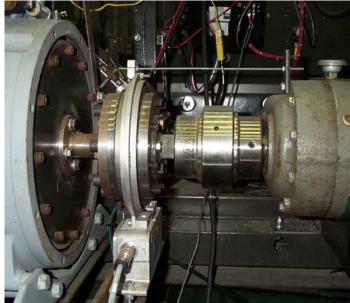


Figure 1. Original Coupling (top view)

Figure 2. Torque-Sensing Coupling (side view)

The device is an HBM T10F Flange Torque Sensor. It uses shear stress to measure torque instead of torsional stress. The measurement signal telemetry and the coupling of excitation voltage are carried out inductively via antenna segments that enclose the flange in a ring shape. This makes the instrument compact, and the lack of physical contact allows it to provide very high accuracy.

Figure 3 shows another view of the coupling. In Figure 3, the Roots blower is in the foreground and the flywheel end of the Hatz engine is in the background. The device closest to the flywheel is the torque sensor. The middle portion, out to the maroon-colored ring, rotates within the silver-colored stator. The enclosure below the stator houses the excitation and sensing parts of the instrument. A rod extends from the blower housing to the top of the stator ring, to stabilize the structure (thus the signal) during operation. A coupling to absorb torsional vibrations is in place on the shaft between the torque sensor and the blower.

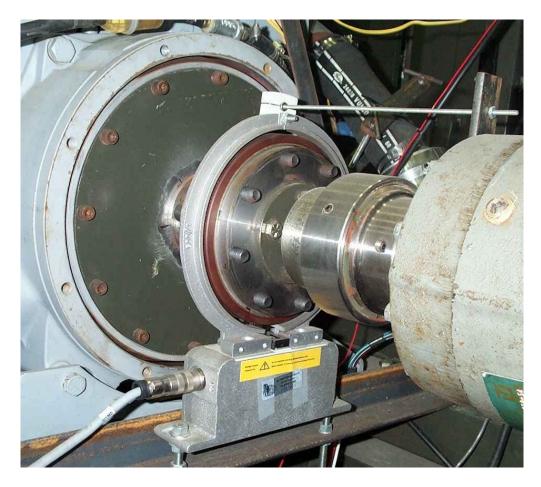


Figure 3. Detail of Torque Sensor

Lacking this torque sensor, the initial testing was performed by setting blower pressures to obtain different levels of load. "Light" load used a setting of 2 psig, "Intermediate" load used 8 psig, and "Heavy" load used 11 psig. To compare these load levels with data taken later, a load curve was measured, correlating blower pressure with engine torque. Figure 4 is a plot of this data. All data was acquired at 2000 rpm.

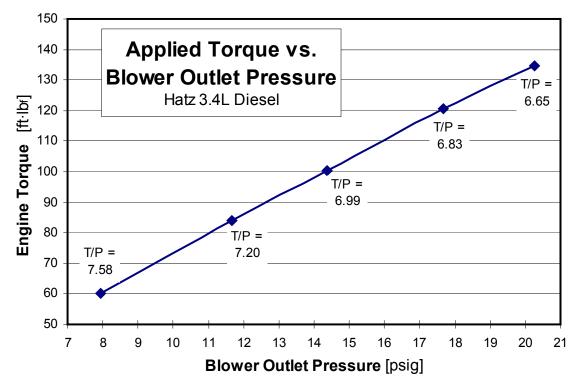


Figure 4. Blower Outlet Pressure correlated to Engine Torque

In order to counteract the low vapor pressure of pentane gas at ambient conditions, a simple water-immersion bottle heater was constructed and installed. This is necessary to provide sufficient in-cylinder vapor pressure to achieve gas flow rates that will allow the desired ratios of gas to liquid fuel to be attained. The pentane tank in the immersion heater is shown in Figure 5. The temperature control for the electric heater is visible at the lower-left of the tank.

For this same purpose, piping carrying the gaseous fuel was wrapped with insulation. Heating wraps were installed on some lines.

Figure 5. Immersion Heater

The air pressure regulating system of the cabin pressurization unit was removed and replaced with a manually controlled butterfly valve to simplify operation. Controls for engine throttle, gas flow and blower backpressure were relocated to the operator console.

Emissions measuring equipment was installed in the test cell to measure exhaust concentration of hydrocarbons at each test point and condition, as well as hydrocarbon content in the inlet air stream — with or without added gaseous fuel.

3.2 Testing Procedures

Similar to the procedure followed in Phase I, tests were conducted according to a matrix involving variations in engine speed, engine load and pilot fuel percentage to map characteristics at steady-state operating conditions. Performance measurements include a range of pertinent temperatures, pressures, flow rates and engine operating parameters, as well as emissions as previously described.

The testing commenced using propane $[C_3H_8]$ as the surrogate well vapor to establish baseline performance parameters. This strategy was employed because it was anticipated that the lighter hydrocarbons would present the greatest challenge to the feasibility of the concept. The high octane rating, therefore low cetane rating, of the propane was expected to be a problem for a diesel engine. The testing did indicate some limitations on safe engine conditions, but overall proved that the use of a diesel engine for vapor destruction was feasible. Following successful completion of testing using propane, the test matrix was repeated with butane $[C_4H_{10}]$ gas, then with pentane $[C_5H_{12}]$ gas. Progressing by steps higher in carbon number was to provide an indication of how a heavier molecular weight gas affects the combustion characteristics of the engine.

The carbon content of pentane is representative of the majority of hydrocarbons found in the vapor sample extracted at Kelley AFB, and results obtained with pentane should be a good indicator of prospective performance at a well site. Pentane will provide the closest approximation of actual well vapors for laboratory testing. The engine was tested at four load levels, at 2000 rpm under all conditions. At each load level, data acquisition commenced without gaseous fuel. Gaseous fuel was then introduced, and the JP-8 fuel flow rate correspondingly reduced, until a desired proportional mixture was achieved, at the previously set engine speed and load. Data was acquired, then the procedure was repeated to further reduce the JP-8 fuel proportion of the total fuel. This procedure was repeated until the JP-8 fuel was only 10% of the total, or until misfire, knock or other combustion problem occurred. Finally, the gaseous fuel was shut off and the JP-8 flow returned to the original rate to repeat the initial condition, to ensure that nothing had changed during testing.

With all data acquired for a given load level, this procedure was repeated for the next-higher load until all conditions had been tested. This matrix is summarized in Table 1:

Table 1. Test Conditions

Designation	Engine Speed	Engine Load	JP-8 % of Total
1A1	2000 rpm	60 ft⋅lb _f	100 %
1B	2000 rpm	60 ft⋅lb _f	80 %
1C	2000 rpm	60 ft⋅lb _f	60 %
1D	2000 rpm	60 ft⋅lb _f	40 %
1E	2000 rpm	60 ft⋅lb _f	20 %
1F	2000 rpm	60 ft⋅lb _f	10 %
1A2	2000 rpm	60 ft⋅lb _f	100 %
2A1	2000 rpm	80 ft·lb _f	100 %
2B	2000 rpm	80 ft·lb _f	80 %
2C	2000 rpm	80 ft·lb _f	60 %
2D	2000 rpm	80 ft·lb _f	40 %
2E	2000 rpm	80 ft·lb _f	20 %
2F	2000 rpm	80 ft·lb _f	10 %
2A2	2000 rpm	80 ft·lb _f	100 %
3A1	2000 rpm	100 ft·lb _f	100 %
3B	2000 rpm	100 ft·lb _f	80 %
3C	2000 rpm	100 ft·lb _f	60 %
3D	2000 rpm	100 ft·lb _f	40 %
3E	2000 rpm	100 ft·lb _f	20 %
3F	2000 rpm	100 ft·lb _f	10 %
3A2	2000 rpm	100 ft·lb _f	100 %
4A1	2000 rpm	120 ft·lb _f	100 %
4B	2000 rpm	120 ft·lb _f	80 %
4C	2000 rpm	120 ft·lb _f	60 %
4D	2000 rpm	120 ft·lb _f	40 %
4E	2000 rpm	120 ft·lb _f	20 %
4F	2000 rpm	120 ft·lb _f	10 %
4A2	2000 rpm	120 ft·lb _f	100 %

3.3 Problems Encountered

A malfunctioning fuel shutoff solenoid on the Hatz engine had to be corrected. The solenoid prevented the engine from starting for more than a few seconds at a time. A solution was found to circumvent the problem and allow the engine to run normally, but only after approximately a week of investigation and repair.

Utilization of pentane as a surrogate test gas proved to be a challenge. During testing, an error in dispenser configuration resulted in liquid pentane being introduced into the engine air stream. The surge in available energy caused a very rapid rise in engine speed and cylinder pressure along with likely detonation that destroyed the cylinder pressure transducer. Upon receiving the properly packaged pentane, and installation of another transducer, another attempt was made at running the test matrix. During execution of the test, another problem was encountered with pentane condensing in the supply lines, resulting in a second surge event and a second transducer failure. Following removal of an in-line pressure regulator that was contributing to the condensation problem, and the installation of additional heat tapes, the condensation problem was solved. Testing was then resumed, with the full test matrix being completed on pentane fuel.

Upon start of the engine for the next test session, a pronounced audible knock was detected. Investigation and disassembly showed that the piston and bore of cylinder 1 were damaged. It appears that debris from one of the failed pressure transducers lodged between the piston and cylinder wall resulting in broken rings and a damaged piston. The engine was repaired and a new pressure transducer was installed.

The intake piping as originally installed sloped steeply downward, and the "gas ring" where the gaseous fuel was introduced was very close physically to the engine. This arrangement is shown in Figure 6 on the left below.

Figure 7 on the right shows the new arrangement of the piping. In order to prevent recurrence of this problem, the air intake piping was reconfigured to prevent liquid fuel,

even if it does reach the intake piping, from entering the engine. Bright green lines have been added to the picture to indicate the position of the pipes in places where they are concealed behind the engine or other equipment. Note that the gas ring is now much farther from the engine, and lower than before. Should liquid fuel ever again reach the intake air stream, it would have to flow uphill through nearly two meters of piping, while being evaporated by the inlet air flow, before reaching the engine. The focus will remain on preventing liquid fuel from being introduced at all, but this added safeguard should prevent further engine damage.

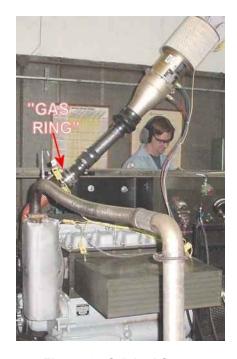


Figure 6. Original Setup

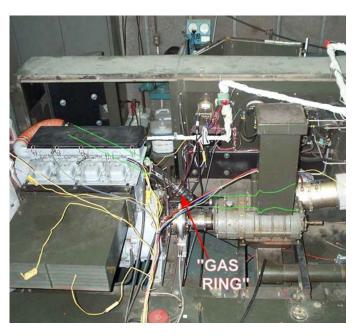


Figure 7. Revised Intake Piping

4.0 RESULTS

A complete set of tabulated test data is attached as Appendix A. A summary of the pertinent test data for discussion is shown in Table 2. All of this data was acquired using pentane as the gaseous fuel, at an engine speed of 2000 rpm. The shaded rows in Table 2 indicate the test condition for each torque setting which used the highest proportion of gaseous fuel without evidencing audible knock.

As previously noted, the pentane used in these experiments as a well gas surrogate most closely approximates the sample collected at Kelly AFB. As this data is therefore expected to most closely predict the operation of the unit in actual use at a well site, this analysis will discuss only the results obtained using pentane.

4.1 Upper Limit of Gaseous Fuel Ingestion

The first effect visible in these data is an apparent limit of the gaseous fuel flow rate without inviting knock. In all but the lowest-load data (60 ft·lb_f), more than 7 lb_m/hr of pentane invited knock. This exception likely resulted from the lower cylinder temperatures associated with the lower engine load. It should be noted that this inference depends on perceptible monitoring for knock as the cylinder pressure instrumentation was inoperative.

Table 2. Vapor Destruction Data Using Pentane

Test Desig.	Engine Power	Torque	Air Flow LFE Dry	JP-8 Fuel Flow	Gaseous Fuel Flow	Total Fuel Flow	Air / JP-8 Ratio	Air / Gaseous Fuel Ratio	Air / Total Fuel Ratio	BSFC	Exhaust HC	Intake HC	HC Reduction
-	bhp	ft·lb _f	lb _m /hr	lb _m /hr	lb _m /hr	lb _m /hr				lb _m /bhp·hr	ppm	ppm	%
1A1	23.2	61.0	391.69	10.017	0	10.02	39.10	-	39.10	0.431	638	4	
1B	23.2	60.9	388.01	7.893	2.048	9.94	49.16	189.5	39.03	0.428	1591	11194	85.8
1C	23.1	60.8	387.58	6.083	4.033	10.12	63.71	96.1	38.31	0.437	2296	20365	88.7
1B2	23.3	61.1	389.00	8.024	1.938	9.96	48.48	200.8	39.05	0.427	1702	10723	84.1
1D	23.3	61.1	386.38	4.099	6.139	10.24	94.25	62.9	37.74	0.440	2660	30072	91.2
1E	23.1	60.5	383.89	1.825	7.821	9.65	210.30	49.1	39.80	0.418	2751	37461	92.7
1A2	23.2	60.8	387.79	9.982	0	9.98	38.85	-	38.85	0.431	697	5	
2A1	30.6	80.3	385.01	12.181	0	12.18	31.61	-	31.61	0.398	668	2	
2B	30.5	80.0	383.12	9.531	2.394	11.93	40.20	160.0	32.13	0.391	1471	12918	88.6
2C	30.2	79.5	380.98	7.136	4.717	11.85	53.39	80.8	32.14	0.392	1913	24038	92.0
2D	30.6	80.1	379.51	4.791	7.062	11.85	79.21	53.7	32.02	0.388	2335	35343	93.4
2E	29.6	77.7	345.46	3.259	11.520	14.78	106.01	30.0	23.37	0.499	1117	56357	98.0
2A2	30.7	80.4	378.67	12.316	0	12.32	30.75	-	30.75	0.402	678	3	
3A1	38.5	100.9	376.86	15.024	0	15.02	25.08	-	25.08	0.391	667	2	
3B	38.1	99.8	375.17	11.350	2.920	14.27	33.06	128.5	26.29	0.375	1402	17297	91.9
3C	39.0	102.3	372.56	8.919	5.763	14.68	41.77	64.7	25.38	0.376	1566	30193	94.8
3D	37.9	99.3	350.89	6.548	9.668	16.22	53.59	36.3	21.64	0.428	668	51027	98.7
3C+	38.5	100.9	363.03	7.011	7.556	14.57	51.78	48.1	24.92	0.379	1036	39954	97.4
3A2	39.0	102.4	371.59	15.301	0	15.30	24.28	-	24.28	0.392	785	1	
4A1	45.6	119.6	371.07	17.948	0	17.95	20.67	-	20.67	0.393	501	1	
4B	45.8	120.0	370.28	13.203	3.637	16.84	28.05	101.8	21.99	0.368	1330	20670	93.6
4C	45.9	120.4	360.46	10.250	7.568	17.82	35.17	47.6	20.23	0.389	1051	40139	97.4
4A2	47.2	123.7	355.05	19.817	0	19.82	17.92	-	17.92	0.420	492	397	

4.2 Destruction Efficiency

For this discussion, "destruction efficiency" is defined as the percentage of the inducted hydrocarbons that are destroyed during combustion. For each condition, the concentration of hydrocarbons is measured in the intake and exhaust gases, and compared to a reference measurement with no inducted hydrocarbons:

$$destruction efficiency = \frac{Intake \, HC - (Exhaust \, HC \, (measured) - Exhaust \, HC \, (reference))}{Intake \, HC} \, x \, 100\%$$

To examine the effect of engine load on hydrocarbon destruction efficiency given a certain concentration of gaseous fuel available, Figure 8 presents the destruction efficiency data acquired relative to the gaseous fuel flow rate for the four engine load ranges tested. Predictably, the proportion of hydrocarbons in the inlet air stream burned increases with increasing engine load. The useable range is limited by engine knock, which starts to occur in the light blue region indicated. The region is bounded at the lower-left by points where no knock occurred, and at the top by points where knock was detected. No destruction efficiency targets have been identified, but the figure outlines possible operational regions.

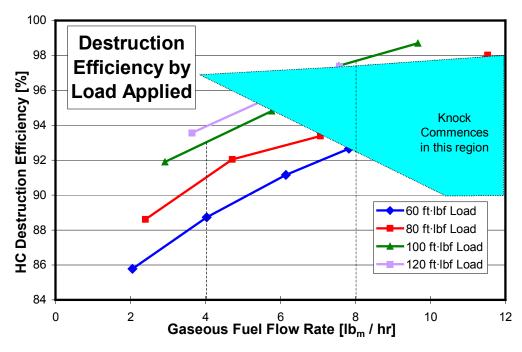


Figure 8. HC Destruction Efficiency by Load Applied

4.3 Fuel Required

The cost of the higher engine load required to realize the higher destruction efficiency for a given intake concentration of gaseous fuel is increased use of added liquid fuel. Figure 9 quantifies the distillate fuel flow rates required for these same conditions. The dashed lines on Figures 8 and 9 indicate that, with 4 lb_m/hr of gaseous fuel entering the engine, increasing the destruction efficiency from 88.7% to 93.0%, a 4.9% improvement, demands a 70.5% increase in added liquid fuel, from 6.1 lb_m/hr to 10.4 lb_m/hr. Similarly, with 8 lb_m/hr of gaseous fuel entering the engine, increasing the destruction efficiency from 92.8% to 97.7%, a 5.2% improvement, demands a 337% increase in added liquid fuel, from 1.6 lb_m/hr to 6.9 lb_m/hr.

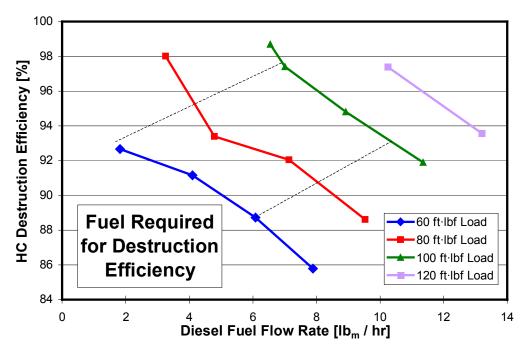


Figure 9. Additional Liquid Fuel Required for Destruction Efficiency

4.4 Throttled Operation

In order to characterize the operation of the engine under the high intake vacuum conditions required to produce well suction, a series of test data was acquired with the engine intake throttled. A manually-operated butterfly valve was added to the intake

tract, downstream of the "gas ring" so that the throttled flow would be a mixture of intake air and gaseous fuel.

Figure 10 is a plot of some of these data, showing the effect on mass air flow of various intake manifold pressure conditions. The tightly-clustered blue lines indicate that the gas concentration of the intake air flow has little effect on the total mass flow at 1550 rpm. The effect is repeated for the testing at 2000 rpm. Another effect shown in the data is that the air flow is a strong function of engine speed. Predictably, for comparable engine vacuum conditions, the 1/3 increase in speed from 1550 rpm to 2000 rpm results in approximately 1/3 more mass air flow. Both sets of lines, if extrapolated to reach the point at which air flow reaches zero, would do so at approximately 50 kPaa. This indicates the engine would cease to operate, for lack of air, at a vacuum of less than 50 kPaa. In fact, the points at the lower-right ends of the curves shown are those at which the engine approached a condition where it would begin to misfire, lacking sufficient air for good combustion. Finally, the one line of data shown at a higher load verifies that engine load has no effect on intake air flow for a given set of intake conditions.

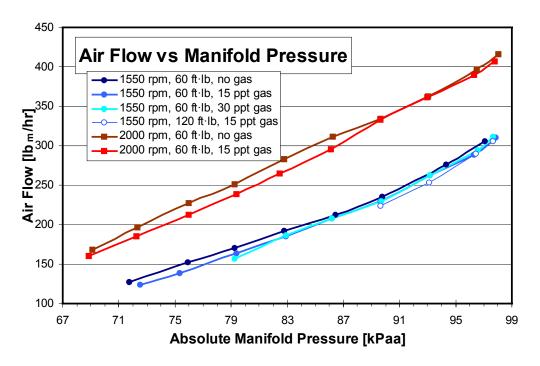


Figure 10. Air Flow vs. Intake Manifold Pressure, Engine Throttled

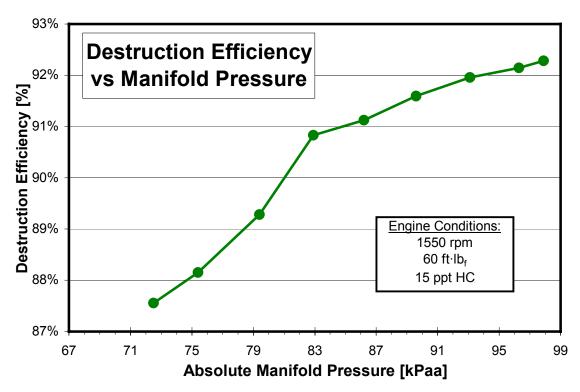


Figure 11. HC Destruction Efficiency vs. Intake Manifold Pressure

A number of engine characteristics that might have become problematic with reduced air flow were monitored, but none in fact reached unacceptable conditions. Temperatures of exhaust, cooling air and oil all stayed within acceptable limits, given that the engine inducted sufficient air for good combustion. Even good hydrocarbon destruction efficiency was maintained, as shown in Figure 11, though it did start to fall off as manifold vacuum increased.

The result of the testing is simply that the engine will continue to operate, and will continue to destroy inducted hydrocarbons, so long as the engine has sufficient air — and the air contains sufficient oxygen — for good combustion. If enough oxygen can not be extracted from the well, outside air must be added to the intake stream, thereby reducing the flow from the well.

5.0 CONCLUSIONS

First and foremost, the diesel engine system is capable of performing the hydrocarbon vapor destruction task. Its success with a variety of hydrocarbon gases bodes well for the unknown conditions it will encounter at various well sites.

The system does have some characteristics that will limit its operation in actual use. The engine must have sufficient oxygen for good combustion. If the well gas hydrocarbon concentration is too high, its flow must be limited to the point that some liquid fuel is still needed by the engine. Finally, if high destruction efficiency is desired, additional fuel will be required.

The engine damage that occurred in the test cell resulted from conditions unlikely to be experienced at a field test site. Proper configuration of the engine system, and possibly some adsorption system or dryer, should avoid a recurrence of the problem.

6.0 RECOMMENDATIONS

Having proved the concept under laboratory conditions, the test rig should proceed to a field test, under appropriate conditions. The field test site should be one in reasonable proximity to Southwest Research, with a well or wells of known concentration and composition. The field test should last long enough to quantify vapor destruction and fuel use, and to experience any conditions that will have to be dealt with at field sites.

At sites where it is needed, an adsorption device should be prepared or purchased and added to the engine system. The adsorber should mitigate large peaks in hydrocarbon concentration from dense wells, and remove excess water from the intake stream.

The project should consider using a different engine for this purpose. Much of the hydrocarbons in the exhaust is created by incomplete combustion of the added liquid fuel. In short, the engine technology is old, making the engine's exhaust unnecessarily dirty.

An engine with electronically-controlled unit injectors with emit an order of magnitude less hydrocarbons and will be more fuel-efficient.

An exhaust catalyst, likely a diesel oxidation catalyst, could be added to the device, further reducing exhaust hydrocarbons by 90-98%.

A device other than an air compressor would offer the opportunity to harness the energy created by the engine system for useful work. If a diesel-driven electrical generator were employed, the electricity generated could be used, for instance, to pump the gases out of the ground; to blow air, perhaps heated air, into the ground to accelerate recovery; or to operate some sort of catalytic aftertreatment. Any remaining available electrical energy could be fed to a local power grid, or used for constructive purposes in the vicinity of the well.

APPENDIX A RAW DATA

Run # Date Time Test Comme - d mmm yy h.mm:ss -		Relative Humidity %			Inlet Air (LFE) °F	Intake Manifold Air °F	Oil Sump °F	Engine Cooling Air In °F		Exhaust Cylinder #1 °F		Power		Total	Fuel Flow	JP-8	Air Flow LFE Dry lb/hr				Air / Gaseous Fuel Ratio :1	Engine Speed rpm	LFE ΔP "h ₂ O	Intake Manif Press psia	Baro Press psia	JP-8 Fuel Flow Ib/hr	Gaseous Fuel Flow Ib/hr	Torque ft-lb	Exhaust HC ppm	Intake HC ppm		LFE Air Density Ib/ft³
Propane, Test Condition 1 1 19 Jan 02 12:03:05 TC1A1 2 19 Jan 02 12:27:46 TC1B 3 19 Jan 02 12:51:45 TC1C 4 19 Jan 02 13:26:06 TC1D 5 19 Jan 02 13:36:07 TC1E 6 19 Jan 02 14:02:05 TC1A2	77.1 77.6 78.1 78.0 78.0 78.2	21.8 21.3 22.2 20.3 20.3 19.9	88.1 91.6 92.4 93.8 94.3 93.5	71.3 71.6 72.2 73.6 73.9 72.0	74.0 74.2 76.0 78.8 77.2 74.9	76.6 77.1 78.0 79.7 79.5 78.2	178.0 186.1 186.3 186.1 186.7 189.1	70.1 70.1 70.8 71.3 72.1 71.4	136.7 138.5 139.4 139.4 139.7 141.2	535.5 538.5 557.1 583.3 647.7 531.7	509.0 511.3 528.4 554.8 602.5 505.3	23.1 22.9 23.3 22.9 22.6 22.8	0.469 0.458 0.456 0.534 0.652 0.428	38.72 38.01 32.85 26.94	10.48 10.61 12.19 14.74	79.3 62.9 40.5 21.1	399.38 398.79 394.09	402.79 401.21 400.46 395.74		93.00 92.78 92.59 91.53	444.59 184.90 101.56 55.00 33.90	2001.0 2001.9 2002.0 2002.9 2002.1 2002.3	1.715 1.715 1.718 1.695	14.11 14.10 14.10 14.10	14.40 14.40 14.39 14.39	8.315 6.680 4.942 3.110	0.906 2.169 3.932 7.251 11.626 -0.107	60.5 60.1 61.1 59.9 59.3 59.8	2 2 2 2 2 2	2 2 2 2 2 2	34.9 36.4 34.0 34.0	0.073 0.073 0.073 0.072 0.072 0.072
Propane, Test Condition 2 1 19 Jan 02 15-43:22 TC2B 1 19 Jan 02 16-23:32 TC2B 3 19 Jan 02 16-49-42 TC2C 4 19 Jan 02 17-08-46 TC2D 5 19 Jan 02 17:90-9 TC2E 6 19 Jan 02 17:27:41 TC2A2	78.5 78.5 78.5 78.4 78.3 78.1	20.3 19.8 19.6 19.5 19.4 19.2	83.8 90.3 92.3 92.2 92.6 92.5	68.8 68.9 68.9 68.5 69.1 68.8	70.7 71.2 73.1 72.8 73.2 72.8	74.0 74.5 76.6 76.0 76.5 76.6	174.7 194.9 196.2 194.8 195.0 196.0	67.1 66.8 69.2 68.7 69.0 68.5	138.4 143.9 146.0 146.1 151.5 147.4	657.5 670.5 694.5 722.6 738.6 694.7	617.0 632.1 650.8 678.9 697.9 653.8	30.6 31.7 32.7 32.6 32.1 32.3	0.400 0.399 0.415 0.410 0.547 0.447	32.08 29.51 29.91 22.49	12.61 13.56 13.36 17.58	80.8 59.1 41.8 23.5	394.01 393.25	398.62 395.62 394.85 391.08		92.26 91.55 91.37 90.46	163.82 71.04 50.58 28.97	2001.6 2006.3 2000.9 2002.1 2004.0 2000.6	1.694 1.686 1.682 1.666	14.10 14.11 14.11 14.11	14.39 14.39 14.39 14.39	10.192 8.015 5.587 4.140	-0.626 2.423 5.547 7.775 13.443 -0.130	80.3 82.9 85.8 85.6 84.2 84.9	2 2 2 2 2 2	2 2 2 2 2 2	33.8 33.6 33.4 33.2	0.073 0.073 0.073 0.073 0.073 0.073
Propane, Test Condition 3 1 21 Jan 02 16.26.48 TC3A1 2 21 Jan 02 16.47.39 TC3B 3 21 Jan 02 17.04.39 TC3B 4 21 Jan 02 17.28.57 TC3D 5 21 Jan 02 17.25.08 TC3E 6 21 Jan 02 18.08.57 TC3A2	74.7 74.9 74.9 75.6 76.4 76.7	18.7 19.0 19.5 20.3 20.5 20.4	93.8 98.1 99.0 99.2 100.0 97.3	73.7 74.2 74.6 75.1 75.0 74.0	76.5 77.1 77.0 77.0 77.0 76.6	80.8 81.3 81.2 81.0 81.2 81.0	197.6 207.8 208.8 207.0 205.8 209.2	78.8 79.2 78.2 78.4 78.8 78.8	154.5 157.4 156.0 155.4 155.3 158.0	825.1 802.0 794.2 802.2 883.6 829.5	772.0 749.1 741.7 751.4 828.4 775.7	38.2 38.2 38.3 38.2 38.4 38.4	0.392 0.389 0.384 0.391 0.430 0.390	26.45 26.60 26.15 23.50	14.86 14.72 14.93 16.50	80.0 60.6 40.5 19.9	391.05 389.26 386.16	397.06 394.27 392.47 390.77 387.71 393.94	33.03 43.85 64.44 117.76	90.79 90.38 90.12 89.54	3385.25 132.25 67.42 43.81 29.20 28100.62	2001.1 2001.5 2001.4 2002.4	1.681 1.674 1.668 1.658	14.09 14.09 14.09 14.09	14.36 14.36 14.36	11.894 8.918 6.040 3.279	0.117 2.971 5.800 8.886 13.223 0.014	100.3 100.4 100.5 100.2 100.6 100.8	3 3 3 3 3	3 3 3 3 3	29.9 30.5 32.1 33.0	0.072 0.072 0.072 0.072 0.072 0.072
Propane, Test Condition 4 1 21 Jan 02 21:18:03 TC4A1 2 21 Jan 02 21:34:09 TC4B 3 21 Jan 02 21:54:55 TC4C 4 21 Jan 02 22:13:08 TC4D 5 21 Jan 02 22:48:39 TC4E 6 21 Jan 02 23:19:45 TC4A2	76.9 76.8 76.9 76.9 76.9 76.9	21.5 21.6 21.7 21.8 23.1 24.2	96.6 97.8 98.7 98.5 98.3 95.7	73.6 73.0 72.8 72.8 72.6 72.5	76.6 76.0 75.3 75.1 75.3 75.8	81.5 80.6 79.9 79.4 79.4 80.6	223.8 221.6 219.8 217.7 209.4 216.8	77.5 75.5 76.2 75.2 76.2 76.4	169.8 166.9 166.0 164.0 160.1 166.8	1019.0 956.7 918.7 903.2 945.3 1023.4	959.5 898.4 860.1 844.8 886.5 961.0	46.0 45.9 45.9 46.0 45.8 45.9	0.405 0.386 0.367 0.363 0.360 0.398	22.89 23.06 23.34	17.71 16.86 16.72 16.49	80.9 60.3 40.7 20.8	384.59 382.63 381.90 381.50	387.73 386.23 384.29 383.56 383.26 388.08	26.85 37.63 56.10 111.26	89.21 88.78 88.60 88.53	1052.85 113.57 57.18 38.54 29.21 4315.94	2002.3 2001.8 2002.4 2000.7	1.649 1.640 1.636 1.635	14.10 14.11 14.11 14.11	14.38 14.38 14.38 14.38	14.325 10.168 6.807 3.429	0.367 3.386 6.691 9.908 13.060 0.089	120.8 120.5 120.6 120.6 120.2 120.5	3 3 3 3 3	3 3 3 3 3	34.6 34.8 34.9 36.4	0.072 0.072 0.073 0.073 0.073 0.073
Propane, Max Torque at 2000 8 37 21 Jan 02 23:41:36 maxTQ	& hot 76.9	24.2	95.8	72.9	76.7	81.8	223.9	77.8	180.4	1220.2	1157.9	51.4	0.428	17.46	21.99	99.3	381.53	383.37	17.48	88.62	2376.79	2004.2	1.640	14.11	14.37	21.833	0.161	134.8	4	4	37.6	0.072
Butane, Test Condition 1 44 23 Jan 02 18:23:57 TC181 45 23 Jan 02 18:45:10 TC18 46 23 Jan 02 18:58:34 TC10 47 23 Jan 02 19:12:45 TC10 48 23 Jan 02 19:25:16 TC18 49 23 Jan 02 19:46:05 TC182	80.2 80.1 80.0 79.9 79.9 79.9	50.9 51.0 50.9 51.2 52.3 54.2	97.2 100.1 100.2 100.0 100.3 99.7	79.0 79.0 78.7 78.7 78.5 77.6	80.6 80.6 80.2 79.9 79.5 79.5	84.1 84.1 83.7 83.3 82.8 83.0	183.8 192.2 192.1 191.2 191.2 193.2	82.1 80.8 80.9 80.0 79.8 79.9	143.3 145.0 143.4 141.8 143.0 144.6	551.1 551.7 560.6 573.8 611.5 549.5	522.2 523.2 530.7 544.8 574.3 519.9	22.9 23.0 23.0 23.0 22.9 23.0	0.436 0.451 0.469 0.510 0.624 0.436	37.80 36.29 33.30 27.21	10.35 10.76 11.73 14.27	80.4 60.2 40.2 19.9	388.09 387.24 387.14 384.59	393.16 392.56 391.68 391.59 389.10 393.22	59.73 82.09 135.31	92.51 92.27 92.23 91.62	1507.10 191.40 90.46 55.18 33.65 1727.33	2002.5 2002.0 2004.3 2002.0	1.719 1.714 1.712 1.700	13.96 13.96 13.96 13.97	14.24 14.24 14.24 14.25	8.325 6.484 4.716 2.842	0.258 2.028 4.281 7.016 11.431 0.225	60.1 60.2 60.2 60.3 60.1 60.3	2 2 2 2 2 2	2 2 2 2 2 2	60.3 60.2 60.2 60.8	0.071 0.071 0.071 0.071 0.071 0.071
Butane, Test Condition 2 53 23 Jan 02 20:37:13 TC281 54 23 Jan 02 20:51:39 TC28 55 23 Jan 02 21:32:3 TC20 56 23 Jan 02 21:44:05 TC2D 57 23 Jan 02 21:22:43 TC2E 58 23 Jan 02 21:30:19 TC2A2	79.2 79.4 79.6 79.6 79.5 79.4	51.6 53.1 53.8 53.5 53.7 53.7	96.7 98.8 99.3 99.4 99.7 99.9	76.4 76.3 76.5 76.7 77.1 76.6	78.5 78.5 78.6 78.5 78.6 78.5	82.2 82.2 82.1 82.0 82.1 82.5	191.9 198.5 199.3 198.1 198.1 200.7	77.9 78.5 79.1 78.7 78.2 77.8	148.8 149.3 148.5 146.5 150.4 151.3	676.0 669.5 663.5 672.8 705.6 682.9	637.8 629.5 624.6 633.4 652.8 640.8	30.6 30.6 30.6 30.8 29.8 30.8	0.405	31.46 31.07 29.80 24.75	12.38 12.52 13.04 15.45	80.6 60.9 40.5 21.2	384.90 384.34 378.16	390.74 389.81 389.50 388.91 382.65 390.03	31.76 38.63 50.46 72.77 115.45 31.23	91.70 91.66 91.51 90.02	1582.84 160.42 78.63 49.54 31.07 1998.65	2001.4 2001.4 2002.0 2000.6	1.699 1.699 1.696 1.668	13.97 13.97 13.97 13.97	14.25	9.975 7.628 5.282 3,276	0.244 2.402 4.895 7.758 12.171 0.193	80.4 80.2 80.3 80.8 78.2 80.8	2 2 2 2 2 2	2 2 2 2 2 2	60.8 61.4 61.2 61.2	0.071 0.071 0.071 0.071 0.071 0.071
Butane, Test Condition 3 62 25 Jan 02 17:29:50 TC381 63 25 Jan 02 17:40:36 TC38 64 25 Jan 02 17:58:39 TC38 65 25 Jan 02 18:09:27 TC30 66 25 Jan 02 18:27:31 TC38 67 25 Jan 02 18:27:00 TC3A2	78.0 77.8 77.9 78.0 78.0 77.9	15.2 14.5 14.6 14.6 14.7 14.7	99.5 101.2 102.1 102.0 101.9 102.1	74.1 74.9 78.8 80.6 81.5 76.6	74.9 74.9 74.6 74.5 74.9 73.7	80.5 80.6 80.3 80.3 80.8 79.4	205.9 208.9 209.7 208.6 207.4 207.9	76.6 76.1 74.9 74.8 74.4 74.4	157.8 158.7 157.1 156.8 152.6 156.5	825.3 795.5 768.2 753.9 771.0 818.2	778.5 752.6 727.1 714.4 735.0 767.2	38.2 38.3 38.1 38.2 38.2 38.1	0.394 0.388 0.384 0.379 0.392 0.386	26.88 27.29 27.56 26.50	14.87 14.64 14.47 14.97	80.6 61.5 41.1 20.0		397.63 397.05 396.43 395.58 393.85 397.46	33.03 43.94 66.31 131.36	91.29 91.16 90.98 90.57	1882.66 137.29 70.08 46.30 32.77 14102.01	2002.5 2002.7 2001.9 2001.4	1.686 1.682 1.679 1.672	14.18 14.18 14.18 14.18	14.46 14.46 14.46 14.46	11.986 8.996 5.948 2.989	0.211 2.884 5.640 8.519 11.983 0.028	100.2 100.5 99.9 100.2 100.3 100.1	-1 -1 -1 -1 -1	0 0 0 0 0	25.6 25.9 25.9 26.1	0.073 0.073 0.073 0.073 0.073 0.073
Butane, Test Condition 4 71 25 Jan 02 19 02:05 TC4A1 72 25 Jan 02 19:20:33 TC4B 73 25 Jan 02 19:31:55 TC4C 74 25 Jan 02 19:45:59 TC4D 75 25 Jan 02 19:51:10 TC4A2	77.4 77.2 77.2 77.2 77.2	15.8 15.8 15.8 15.8 15.6	89.3 92.2 92.9 93.2 93.3	67.2 67.6 67.8 68.0 67,4	70.5 70.3 70.1 69.7 69.7	75.2 75.1 74.8 74.4 74.5	200.4 210.7 211.6 213.3 213.1	72.6 71.5 71.4 70.3 71.2	157.3 158.2 158.6 159.6 159.8	1001.7 944.6 896.6 858.8 1001.3	939.7 885.1 837.3 804.2 922.9	46.0 45.7 46.0 45.6 45.9	0.403 0.387 0.375 0.371 0.407	22.60 23.05 23.34	17.67 17.23 16.90	81.3 60.4 43.4	392.57 390.08 387.27	394.43 393.80 391.31 388.48 393.85	27.33 37.51 52.84	90.38 89.80 89.15	1267.16 118.67 57.13 40.46 1395.78	2001.6 2000.4 1997.9	1.658 1.646 1.634	14.19 14.20 14.19	14.47 14.47 14.47	14.366 10.399 7.329	0.310 3.308 6.828 9.573 0.281	120.7 119.9 120.8 119.8 120.4	-1 -1 -1 -1	0 0 0 0	27.2 27.2 27.2	0.074 0.074 0.074 0.074 0.074
Pentane, Exploratory Tests 79 6 Feb 02 21:34:53 TC1A	0.0	29.37	91,2	67.3	68.2	73.3	194.7	71.4	148.0	806.1	759.9	38.1	0.388	27.43	14.77	100.0	464.90	465.03	31.49	91.42	-	2001.0	1.671	14.17	14.44	14.766	-0.250	100.0	314	41	-24.4	0.074

Run #	Date d mmm yy		Test Comment				Pentane Fuel In °F	Inlet Air (LFE) °F	Intake Manifold Air °F		Cooling	Engine Cooling Air Out °F	Cylinder		Power		LFE Total	Flow	Pilot JP-8		Air Flow LFE Wet lb/hr		Flow	Air / Gaseous Fuel Ratio ;1	Engine Speed	ΔP	Intake Manif Press psia	Baro Press psia	Flow	Gaseous Fuel Flow Ib/hr			HC		LFE Air Density Ib/ft³
83 84 85 86 87 88	12 Feb 02 12 Feb 02 12 Feb 02 12 Feb 02 12 Feb 02 12 Feb 02 12 Feb 02	10:54:21 13:56:57 14:08:16 14:11:25 14:22:09 14:27:42 14:31:23	TC1B - HC TC1C - HC TC1C - HC TC1C - HC		19.1 16.5 16.2 16.2 16.4 16.4 16.4 15.7	81.7 86.9 90.4 90.9 92.1 92.4 92.5 92.7	61.7 67.5 67.8 67.8 68.4 68.5 68.3 68.6	64.4 69.4 69.9 69.8 70.4 70.1 69.9 70.3	67.5 72.9 73.3 73.4 73.7 73.7 73.5 73.7	173.7 181.0 182.0 183.4 183.9	64.6 69.9 70.2 70.5 70.2 69.8 70.9 69.8	128.0 132.6 134.7 135.1 134.3 135.0 135.1 133.2	531.8 531.8 531.7 542.9 539.5	494.8 505.5 504.8 504.2 514.2 511.8 512.4 526.0	22.9 22.8 22.8 22.8 22.9 22.9 22.9 22.9	0.428 0.445 0.453 0.493 0.481 0.493	41.99 40.36 39.67 36.18 37.18 36.12	9.78 10.13 10.33 11.27 10.99 11.31	100.0 82.6 81.1 58.1 62.9 60.1	405.13 403.51 404.32 402.44 403.04 402.62		41.42 48.22 48.28 61.48 58.35 59.29	93.21 92.92 93.10 92.74 92.89 92.80	228.43 206.54 85.16 98.73 89.15	2001.0 2001.1 2001.0 2002.3 2002.3 2003.7	1.708 1.703 1.707 1.701 1.703 1.701	14.11 14.12 14.12 14.12 14.11 14.11	14.40 14.40 14.40 14.40 14.40 14.40	9.782 8.368 8.374 6.546 6.908 6.790	0.175 -0.017 1.766 1.958 4.726 4.082 4.516 6.986	60.1 59.9 59.8 59.9 60.0 60.0 60.1 59.8	1874 2669 2681 2670	24 41 11187 11022 26223 22648 25680 35392	26.0 25.9 25.9 26.4 26.4 26.4	0.073 0.073
94 95	12 Feb 02 12 Feb 02	15:17:41 15:44:23	ion 2, HC Sa TC2A1 - HC TC2B - HC TC2C - HC	76.1 76.8	15.9 16.1 15.0	95.6 96.2 96.4	69.8 70.0 70.2	71.8 71.8 72.3	76.0 75.9 76.0	197.3 196.6 195.9	73.9	146.4 146.0 144.9		622.5 617.7 613.9	30.9	0.406	32.17	12.52	80.1	397.31	398.83 398.58 397.23	39.60	91.92	159.52 77.52		1.690	14.11	14.39	10.033	-0.676 2.491 5.109	80.3 81.0 80.9	605 1577 2660	42 15900 33804	27.4	
100	12 Feb 02	16:13:45	ion 3, HC Sa TC3C - HC TC3D - HC	77.7	14.6		71.1 71.1		77.1 77.0	203.5 204.2			760.2 752.3								392.46 391.71									5.977 8.477	100.1 100.5		35414 35135		0.073 0.073
105	12 Feb 02	16:36:54	ion 4, HC Sa TC4C - HC TC4E - HC	78.0	14.2		72.0 71.2		78.5 78.6	213.6 223.0		167.8 176.0	914.0 866.2	855.6 810.3							384.85 366.26									7.818 14.079	122.7 120.5	1386 604			0.073 0.073
110 111 112 113 114 115	tane, Te 1 Mar 02	10:02:24 10:22:33 10:33:05 10:41:29 10:52:27 11:03:34	TC1B TC1C TC1B2 TC1D TC1E	79.8 80.0 79.8 79.8 79.8 79.8 80.0 80.1	35.0 34.7 36 36 36 36 36.8 36.8	95.9 96.3 96.4 96.4 96.9 98.4 98.5	67.3 92.1 92.9 92.3 95.1 100.3 79.5	69.5 69.1 69.7 70.3 69.7 70.4 71.0	75.4 75.0 75.5 76.1 76.1 77.3 77.1	190.5 191.7 191.6 191.6 192.2 195.0 195.2	71.4 72.5 73.0 72.8 72.8	140.6 140.5 141.4 141.2 143.7 146.6 143.4		533.8 527.4 520.9 530.2 507.1 487.9 533.4	23.2 23.2 23.1 23.3 23.3 23.1 23.2	0.428 0.437 0.427 0.440 0.418	39.03 38.31 39.05 37.74 39.80	9.94 10.12 9.96 10.24 9.65	79.4 60.1 80.5 40.0 18.9	388.01 387.58 389.00 386.38 383.89	390.68	63.71 48.48 94.25 210.30	91.80 91.69 92.04 91.45 90.94	96.10 200.76 62.94	2001.7 2003.1 1999.7 2005.0 2001.4 2002.6 2001.7	1.681 1.680 1.688 1.676 1.668	13.98 13.98 13.98 13.97 13.97	14.26 14.26 14.26 14.25 14.25	7.893 6.083 8.024 4.099 1.825	-0.508 2.048 4.033 1.938 6.139 7.821 -0.411	61.0 60.9 60.8 61.1 61.1 60.5 60.8	2296 1702 2660	4 11194 20365 10723 30072 37461 5	49.7 50.4 50.4 50.4 51.2	0.029 0.029 0.028
120 121 122 123 124	tane, Te 1 Mar 02 1 Mar 02 1 Mar 02 1 Mar 02 1 Mar 02 1 Mar 02	13:38:03 13:52:53 14:01:42 14:11:28 14:20:04	TC2B TC2C TC2D TC2E	78.8 79.4 79.4 79.5 79.5 79.3	41.8 41.1 41 41,4 40.9 41.1	99.6 101.7 102.2 103.0 105.1 105.9	70.9 92.7 93.3 98.7 108.3 74.2	74.2 75.0 74.9 75.2 75.4 76.6	80.3 80.9 81.4 82.3 85.7 83.1	201.2 204.9 205.9 207.8 225.5 217.9	76.7 77.8 77.9 77.5 78.0 78.2	152.5 153.7 154.6 157.5 202.3 160.1	691.3 683.5 666.5 642.0 804.5 707.2		30.6 30.5 30.2 30.6 29.6 30.7	0.398 0.391 0.392 0.388 0.499 0.402	32.13 32.14 32.02 23.37	11.93 11.85 11.85 14.78	79.9 60.2 40.4 22.0	383.12 380.98 379.51 345.46	384.42	40.20 53.39 79.21	91.03 90.54 90.25 82.15	80.76	2001.6 2002.5 1998.4 2004.5 2000.1 2003.0	1.680 1.670 1.666 1.516	13.93 13.93 13.93 13.96	14.21 14.21 14.20 14.20	9.531 7.136 4.791 3.259	-0.428 2.394 4.717 7.062 11.520 -0.360	80.3 80.0 79.5 80.1 77.7 80.4	1913 2335	2 12918 24038 35343 56357 3	53.7 53.6 54.0 53.6	0.029 0.029 0.030
129 130 131 132 133	tane, Te 1 Mar 02 1 Mar 02 1 Mar 02 1 Mar 02 1 Mar 02 1 Mar 02	15:39:15 15:50:30 16:01:24 16:08:28 16:14:52	TC3B TC3C TC3D TC3C+	80.1 80.1 80.3 80.3 80.3 80.5 80.5	39.8 39.4 39 38.7 38.4	103.2 105.9 107.6 109.6 111.9 112.7	75.4 93.0 96.6 106.2 105.1 87.5	79.8 80.3 80.4 81.2 81.5 80.9	86.2 86.7 87.6 90.2 91.1 89.1	215.7 220.5 223.5 234.9 248.7 242.7	79.1 79.1 80.9 80.7 81.2 81.3	167.6 169.3 171.8 200.9 191.9 178.6		818.6 790.8 774.2 842.1 807.6 835.0	38.5 38.1 39.0 37.9 38.5 39.0		26.29 25.38 21.64 24.92	14.27 14.68 16.22 14.57	79.5 60.7 40.4 48.1	363.03	378.50 375.87 353.97	41.77 53.59 51.78	89.40 88.82 83.64 86.57	128.48 64.65 36.30 48.05	2002.4 2002.0 2002.4 2003.5 2002.7 2003.0	1.662 1.651 1.557 1.612	13.92 13.92 13.94 13.92	14.19 14.18 14.18 14.18	11.350 8.919 6.548 7.011	-0.523 2.920 5.763 9.668 7.556 -0.504	100.9 99.8 102.3 99.3 100.9 102.4	667 1402 1566 668 1036 785	2 17297 30193 51027 39954 1	53.2 53.1 52.8 52.8	0.029 0.030
138 139 140	tane, Te 1 Mar 02 1 Mar 02 1 Mar 02 1 Mar 02	17:22:08 17:32:32 17:41:34	TC4B TC4C	81.5 81.8 81.8 81.8 82.5	36.1 35.6 35.6 34.2	112.9 114.4 115.8 116.0	80.6 93.5 103.4 88.7	83.3 83.5 83.6 79.6	90.7 90.9 92.1 90.9	235.7 237.1 242.8 268.7	78.2 78.4 78.6 77.5	181.9 182.1 194.4 205.8	1054.5 992.4 1005.6 1222.7	933.4 952.4	45.8 45.9	0,393 0,368 0,389 0,420	21,99 20.23	16.84 17.82	78.4 57.5	360.46	373.42 363.52		88.45 86.11	101.80 47.63	2002.9 2002.9 2000.5 2002.0	1.651 1.608	13.92 13.93	14.19 14.18	13.203 10.250	-0.374 3.637 7.568 -0.140	119.6 120.0 120.4 123.7		1 20670 40139 397	51.9 51.9	
No (142 143 144	Gas, Eng 1 Nov 02 1 Nov 02 1 Nov 02	ine Che 15:16:25 15:22:15 15:36:21	ck Runs 20-06-00-97.2 20-08-00-97.3 20-10-00-97.4 20-12-00-97.4	70.6 71.6 70.3	61.6 60.3 62.5	91.3 97.2 109.3 117.3	81.8 87.1 98.7 108.7	81.0 85.1 91.8 98.7	84.4 88.8 99.1 108.1	169.2 183.7 213.8 235.8	78.3 83.0 90.1 92.6	143.2 159.0 181.0		526.0 650.8 825.3	22.7 30.2 38.1	0.500 0.447 0.429	36.74 30.44 24.50	11.34 13.51 16.37	86.3 89.5 91.7	416.70 411.18 400.93	419.28 413.69	42.57 34.01 26.71	97.91 97.32 96.06	-	1996.2 1998.5 2001.3	1.819 1.818 1.808	14.10 14.11 14.12	14.34 14.35 14.35	9.790 12.090 15.009	1.552 1.417 1.358 1.247	59.7 79.4 100.1 120.1	683 696 705 566	33 29 25 25	57.1 57.1	0.071 0.071 0.070 0.069

Column C	Run Temp-F # Date Time Test Comment RH F - d mmm yy h:mm:ss - °F		8 Pentane In Fuel In °F		Intake Manifold Air °F		Cooling	Engine Cooling Air Out		Exhaust	Power		Total F	Fuel Pilo		v Air Flow / LFE Wet lb/hr			Air / Gaseous Fuel Ratio :1	Engine Speed rpm	LFE ΔP	intake Manif Press psia	Press		Gaseous Fuel Flow fb/hr			Intake HC ppm		LFE Air Density Ib/ft³
Second S	146 A Nov 02 12:45:59 20-06-27-96:7 75.4 147 4 Nov 02 12:53:27 20-08-27-96:6 75.7 148 4 Nov 02 13:00:46 20-10-29-96:6 75.8 149 4 Nov 02 13:33:51 20-12-09-96:7 77.3 150 4 Nov 02 13:32:57 20-12-09-96:7 77.1 151 4 Nov 02 13:42:17 20-10-09-96:7 77.2 152 4 Nov 02 13:45:52 20-80-09-96:6 76.9 153 4 Nov 02 14:09-48 15-06-28-97.1 76.8 155 4 Nov 02 14:23:02 15-10-30-97.2 77.2 157 4 Nov 02 14:23:02 15-10-30-97.2 77.1 158 4 Nov 02 14:33:03 15-12-00-97.2 77.1 158 4 Nov 02 14:39:07 15-10-00-97.1 77.1 159 4 Nov 02 14:39:07 15-10-00-97.1 77.2 160 4 Nov 02 14:09:04 15-08-00-97.1 77.2	45.8 99. 46.2 100 44.3 110 44.1 112 43.6 114 43.9 115 44.1 114 43.8 108 43.8 107 43.9 107 43.8 107 44.1 105 44.1 005	5 96.7 .9 101.5 .0 110.2 .5 109.7 .0 108.6 .2 108.7 .6 108.0 .4 105.4 .4 105.4 .0 107.1 .2 108.6 .9 109.7 .5 108.8 .8 108.1	84.3 85.6 96.3 96.9 97.0 96.2 89.9 86.6 86.9 88.3 92.5 105.8 107.0 103.6	87.6 94.5 100.9 103.4 103.7 102.5 97.4 92.8 95.2 97.5 101.1 106.0 107.1 104.0	192.5 210.3 222.5 227.8 230.6 229.2 221.5 205.3 204.7 208.6 218.2 220.4 221.1 214.5	78.1 75.4 85.0 87.3 87.5 86.2 83.6 78.1 80.6 81.0 83.4 71.9 70.9 69.4	154.4 169.9 188.5 196.8 185.7 173.5 159.8 157.3 173.7 186.0 203.3 204.3 188.0 171.4	661.8 817.2 979.5 1096.5 888.4 726.7 587.7 526.2 719.5 826.8 1009.1 1130.3 907.2 739.3	630.8 777.8 920.8 1023.3 857.5 708.4 567.3 504.2 780.0 927.7 1012.8 854.7 695.2	30.5 38.3 45.6 45.5 37.7 30.3 23.0 17.7 23.4 29.6 35.4 35.6 29.4 23.5	0.408 0.386 0.387 0.413 0.399 0.412 0.450 0.451 0.466 0.417 0.422 0.460 0.432 0.448	32.76 1 27.51 1 22.12 1 20.85 1 25.96 1 31.18 1 37.72 1 38.08 7 27.80 1 24.74 1 24.74 1 23.88 1 29.21 1	2.44 60.7 4.78 66.5 7.67 69.2 8.76 100.0 5.02 99.1 7.98 54.8 0.89 65.0 2.36 68.0 4.96 73.5 6.39 99.6 2.73 99.3 0.50 99.3	407.36 406.61 390.91 391.19 389.90 389.26 389.91 303.76 302.72 305.73 301.16 301.97 304.00 306.73	409.04 408.26 392.53 392.76 391.44 390.77 391.42 304.95 303.89 306.91 302.34 303.14 303.14 305.18 307.95	54.01 41.39 31.98 20.85 26.20 31.75 38.91 69.44 42.78 36.38 27.38 18.50 24.05 29.42	96.59 96.73 94.80 94.97 94.66 94.38 93.47 72.40 73.10 73.10 74.49 75.18 75.42	83.25 82.03 71.74 - - 84.32 79.37 77.30	2002.2 2002.1 2001.3 2001.8 2003.0 2005.3 2001.0 1550.9 1651.2 1551.7 1551.4 1553.1 1551.6 1554.0	1.805 1.811 1.798 1.803 1.797 1.790 1.759 1.356 1.353 1.372 1.369 1.428 1.443 1.442	14.01 14.00 14.02 14.02 14.03 14.02 14.01 14.09 14.09 14.10 14.10 14.09 14.09	14.25 14.24 14.24 14.24 14.24 14.24 14.23 14.23 14.23 14.23 14.23 14.23 14.23	7,543 9,825 12,225 18,762 14,880 12,262 10,022 4,374 7,076 8,404 10,999 16,324 12,639 10,427	4.893 4.957 5.449 -0.359 0.139 0.222 0.314 3.603 3.814 3.955 3.963 0.069 0.091 0.073	79.9 100.4 119.8 119.3 98.8 79.3 60.3 59.9 79.1 100.3 119.9 120.5 99.7 79.3	2091 1678 1638 750 766 751 718 1986 1852 1650 1304 626 92 63	26907 29377 30082 36 33 52 25 27965 28769 29791 29881 58 52 39	53.3 53.6 53.9 53.5 53.5 53.2 53.5 53.1 53.1 53.5 53.4 53.3 53.6	0.071 0.070 0.069 0.069 0.069 0.070 0.070 0.070 0.070 0.070 0.070 0.069 0.068
	162 6 Nov 02 1 43:50:29 15-06-00-98.3 73.0 163 6 Nov 02 1 44:08:07 20-12-00-97.7 73.5 164 6 Nov 02 1 44:18:03 20-06-00-97.7 73.5 165 6 Nov 02 1 44:30:17 20-06-00-96.2 73.6 166 6 Nov 02 14:40:06 20-12-00-98.2 73.6 167 6 Nov 02 14:46:06 20-12-00-98.2 73.6 167 6 Nov 02 14:46:06 20-12-00-98.2 74.0 168 6 Nov 02 14:51:11 20-08-00-96.3 73.8 169 6 Nov 02 14:56:29 20-06-00-96.2 74.1 170 6 Nov 02 15:06:17 20-06-00-96.2 74.1 171 6 Nov 02 15:06:17 20-06-00-96.2 74.1 171 6 Nov 02 15:06:17 20-06-30-96.2 74.1 171 6 Nov 02 15:06:17 20-06-30-96.2 74.5 173 6 Nov 02 15:20-48 20-08-16-96.2 74.1 174 6 Nov 02 15:20-48 20-08-16-96.2 74.6 175 6 Nov 02 15:31:49 20-10-31-96.2 74.6 176 6 Nov 02 15:40-03 20-12-31-96.2 74.6 177 6 Nov 02 15:40-03 20-12-31-96.2 74.6 178 6 Nov 02 15:51:49 20-10-31-96.2 74.6 178 6 Nov 02 15:51:49 20-10-31-96.2 74.6 178 6 Nov 02 15:51:49 20-10-31-96.2 74.6 188 6 Nov 02 15:55:57 15-06-00-97.3 73.3 180 6 Nov 02 16:02:06 15-06-00-97.3 73.3 180 6 Nov 02 15:55:57 15-06-00-97.2 73.7 182 8 Nov 02 12:59:04 15-10-00-96.6 74.1 183 8 Nov 02 12:59:04 15-10-00-96.6 74.1 183 8 Nov 02 12:35:71 15-06-00-96.6 74.1 183 8 Nov 02 12:35:71 15-06-00-96.6 74.1 183 8 Nov 02 12:35:71 15-06-00-96.6 74.4 188 8 Nov 02 12:35:71 15-06-00-96.6 74.4 189 8 Nov 02 13:31:14 15-06-30-96.3 75.2 199 8 Nov 02 13:38:05 15-06-14-96.4 74.9 199 8 Nov 02 13:38:05 15-06-00-96.0 76.1 199 13 Nov 02 15:05:51 15-06-00-96.0 76.1 199 13 Nov 02 15:05:51 15-06-00-96.0 76.1 199 13 Nov 02 15:05:51 15-06-00-96.0 76.1 199 13 Nov 02 15:05:50 15-06-00-96.0 76.1 199 13 Nov 02 15:05	26 102 25.9 105 25.9 105 25.6 103 25.5 104 25.5 107 25.7 107 24.7 106 25.1 107 24.7 106 25.1 105 25.2 105 25.5 106 25.5 107 24.7 106 25.1 105 25.2 105 25.5 106 25.1 105 25.2 105 25.5 106 25.1 105 25.1 105 25.1 105 25.1 105 25.1 105 25.2 105 25.2 105 25.2 105 25.3 105 25.3 105 25.4 107 24.6 108 24.1 106 24.1 106 24.1 106 24.1 106 24.1 106 24.1 106 24.1 106 24.1 106 24.1 106 24.1 106 24.1 106 24.1 106 24.1 106 24.1 106 24.2 105 35.5 103 35.5 88.3 105 33.5 88.3 30.9 4.3 33.5 88.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6 98.3 33.6	.4 98.4 98.4 98.0 99.1 99.1 98.0 99.1 98.0 99.5 98.0 99.5 98.0 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.7 99.10.8 99.5 99.5 99.5 99.5 99.5 99.7 99.10.8 99.5 99.5 99.7 99.5 99.5 99.5 99.7 99.7 99.5 99.5 99.5 99.5 99.7 99.7 99.5 99.5 99.5 99.7 99.7 99.5 99.5 99.7 99.7 99.5 99.5 99.7 99.7 99.5 99.5 99.7 99.7 99.5 99.5 99.7 99.7 99.5 99.5 99.7 99.7 99.7 99.5 99.5 99.7 99.7 99.7 99.7 99.7 99.7 99.5 99.5 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.5 99.5 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.5 99.5 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.	96.5 2 84.6 95.9 96.1 91.9 96.1 91.9 96.1 91.9 96.1 91.9 96.2 91.6 91.9 96.2 91.6 91.9 91.6 91.9 91.6 91.9 91.6 91.9 91.6 91.9 91.6 91.9 91.6 91.9 91.6 91.9 91.6 91.9 91.6 91.9 91.6 91.9 91.6 91.9 91.6 91.9 91.9	103.8 94.8 94.8 94.8 94.8 95.1 102.2 102.2 102.2 102.3 95.1 96.1 96.1 106.6 106.9 107.7 108.7 107.7 108.7 108.7 108.7 108.7 108.8 108.9 109.9 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109	207.9 211.2 205.8 209.4 216.6 217.3 216.6 217.3 216.6 217.3 216.6 217.3 214.9 211.4 208.8 208.8 208.6 5 207.4 211.2 214.0 209.3 200.7 211.3 220.6 209.2 214.6 209.3 200.7 211.3 220.6 214.5 207.2 214.5 207.8 210.3 210.6 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.5 214.	93.6 77.5 78.0 82.4 81.2 81.2 81.2 81.2 78.9 80.0 80.4 80.2 83.4 83.2 83.2 83.2 83.2 83.2 83.2 83.3 83.2 78.9 86.0 86.0 86.0 86.1 86.0 86.1 86.0 86.1 86.0 86.1 86.0 86.1 86.0 86.1 86.0 86.1 86.0 86.1 86.0 86.0 86.0 86.0 86.0 86.0 86.0 86.0	191.2 154.3 151.7 186.6 158.2 168.7 168.7 168.7 168.7 168.7 168.7 168.7 168.7 168.7 168.7 168.7 168.8 162.2 164.3 162.2 164.3 162.2 164.3 162.2 164.3 162.2 166.5 163.5 163.7 163.5 163.7 163.5 163.7 163.5 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8 163.8	1084.3 575.3 569.7 1078.0 569.7 1078.0 569.7 1078.0 569.7 1078.0 569.5 577.7 567.6 3.6 55.5 577.7 567.6 3.6 55.5 577.7 567.6 3.6 55.5 577.7 567.6 3.6 55.5 577.7 567.6 3.6 55.5 577.0 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.4 561.	1024 2 562.4 1994.5 562.4 1994.5 562.4 1994.5 573.6 691.7 73.6 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195.7 195	45.7 22.9 45.7 30.4 30.7 30.4 30.7 45.0 30.4 30.7 45.0 45.7 46.0 36.2 37.9 46.0 45.7 46.0 29.5 23.6 29.5 23.6 29.5 23.6 29.5 23.6 29.5 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	0.405 (0.431 (0.449 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.475 (0.	2201 1 4 1.18 4 1 1.8 5 1 2.00 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8 1 1.8	8.54 100.9 99.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0) 408.00 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10 408.10	408.59 408.59 392.19 387.68 386.83 385.76 386.11 387.18 389.24 390.09 388.87 377.60 295.32 300.28 303.30 300.64 295.32 302.15 299.90 294.23 295.76 290.94 292.78 294.13 457.32 458.32 300.16 307.69 306.46 477.83 472.96 468.76 468.76 468.76	22.01 41.18 19.62 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78	97.40 95.42 99.150 92.34 99.217 91.22 90.57 91.50 90.82 90.57 91.60 90.96 91.78 91.60 99.31 2 92.64 91.70 97.71.33 70.97 77.13.57 70.35 69.83 70.97 70.48 69.41 69.59 92.61 10.20 69.92 110.20 69.43 10.62 69.51 10.81 110.81 110.81 110.81 110.81 110.81 110.81 110.81 110.81 110.81 110.81 110.81	187.48 90.52 91.71 172.28 182.11 181.26 180.20 181.26 100.20 115.01 108.19 54.03 54.03 54.03 55.37 104.85	1998.9 2001.0 1998.3 2001.5 2002.2 2000.6 2 2000.2 2 2000.6 2 2000.6 2 2000.6 2 2000.6 2 2000.6 2 2000.6 2 2000.6 2 2000.6 2 2000.6 2 2001.8 2 2001.5 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001.6 2 2001	1.852 1.787 1.762 1.763 1.763 1.763 1.763 1.763 1.763 1.763 1.763 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764 1.764	14.17 14.17 14.17 14.17 14.17 14.19 13.96 13.96 13.96 13.96 13.95 13.95 13.95 13.95 13.95 13.95 13.95 13.95 13.95 13.95 13.95 13.95 13.95 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.96 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97	14.41 14.41 14.41 14.41 14.41 14.41 14.41 14.41 14.41 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40	18.540 9.910 9.910 9.888 18.631 14.858 12.123 8.050 10.166 12.770 10.365 10.166 12.770 10.365 10.367 116.227 16.227 16.227 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 16.237 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 17.639 1	0.634 0.734 0.7392 0.969 0.052 0.052 0.0561 0.562 2.063 4.299 4.303 2.078 0.107 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.19	120.1 60.5 60.0 120.2 99.3 80.0 120.2 99.3 80.0 120.2 99.3 80.0 120.2 120.2 120.2 120.2 120.1 120.2 120.1 120.2 120.1 120.2 60.6 60.6 60.6 60.6 60.6 60.6 60.6	677 670 718 750 762 744 1914 1385 646 1264 1161 165 568 601 1728 1165 572 748 1011 1202 1728 1728 1728 1728 1728 1728 1728 1738 1738 1738 1738 1738 1738 1738 173	71 46 44 49 48 37 40 15603 31296 31296 31296 31296 313636 31296 313636 31744 48 17 25 29 13 13880 31744 48 17 25 29 13 13890 2725 27 27 27 27 27 27 27 27 27 27 27 27 27	37.8 36.4 35.9 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1	0.070 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.071 0.071

Run # Date Time Test Comment - d mmm yy h:mm:ss -		Relative Humidity %		Pentane Fuel In °F	Inlet Air (LFE) °F	Intake Manifold Air °F	Oil Sump °F	Engine Cooling Air In °F	Engine Cooling Air Out °F		Exhaust Stack °F	Power	BSFC lb/bhp·hr	Total	Fuel			Air Flow LFE Wet lb/hr		Air Flow LFE acfm	Air / Gaseous Fuel Ratio :1	Engine Speed rpm	LFE ΔP	Intake Manif Press psia	Baro Press psia	JP-8 Fuel Flow lb/hr	Gaseous Fuel Flow lb/hr		Exhaust HC ppm		Dew I Point I °F	LFE Air Density lb/ft²
217 14 Nov 02 16:26:23 15-06-00-94.3 218 14 Nov 02 16:31:01 15-06-30-94.3		50.5 50.7	102.4 102.5	99.2 97.1	84.1 83.8	95.3 94.5	197.6 196.8	81.7 81.9	159.4 158.3	551.2 516.1	536.8 506.7	17.7 17.7	0.476 0.450	2.24			276.70 274.20	278.16 275.67	35.99 98.58	65.85 65.24	53.04	1550.0 1547.3				7.688 2.781	0.768 5.170	60.1 60.0	574 2331			0.070 0.070
219 14 Nov 02 16:38:04 15-08-30-94.3		50.7	102.9	102.7	84.8	96.6	199.6	82.3	172.3	680.3	635.9	23.5	0.465		10.93		278.63	280.13		66.41	47.83	1548.7	1.240		14.22	5.105	5.826	79.7	1931			0.070
220 14 Nov 02 16:41:46 15-08-00-94.4		50.9	103.1	102.2	85.7	98.3	202.5	82.7	176.9	760.1	701.0	23.5	0.485		11.37		281.09	282.60	2011	67.11	-	1549.7				10.504	0.866	79.5	682			0.070
221 14 Nov 02 16:50:36 15-10-00-94.4		50.6	103.5	102.5	91.7 94.0	102.3	208.9	86.8 88.1	184.9 184.3	899.7 816.0	843.0 780.2	29.6 29.6	0.454		13.42 8.03		281.75	283.25 284.62	22.73 35.26	68.03 68.64	-	1549.9 1550.5			14.22	12.396	1.022 -0.152	100.2 100.2	633 1509			0.069
222 14 Nov 02 16:54:25 15-10-28-94.4 223 14 Nov 02 17:01:41 15-12-32-94.4		51.0 50.9	104.2 105.5	103.8	99.1	104.9 109.2	209.4	85.5	197.7	975.7	909.2	35.3	0.271		17.34			283.20	27.32	68.93	40.10	1551.8				10.311	7.024	119.6	1159			0.068
224 18 Nov 02 14:25:31 15-12-00-94.3		42.5	105.1	104.7	101.7	104.6	209.8	79.2	195.8	1029.9	950.6	35.3	0.430		15.18		263.28	264.20	18.44	63.94	-	1548.8			14.35	14.280	0.902	119.6	357	-136	51.6	0.069
225 18 Nov 02 14:40:15 15-12-00-90.9		42.3	108.5	105.6	92.7	107.3	225.3	84.3	208.0	1112.4	1016.2	35.7	0.424		15.10			244.38	16.12	58.20	-	1552.0				15.105	-0.082	120.7	30			0.070
226 18 Nov 02 15:00:36 15-06-00-89.7		42.8	104.3	94.7	84.2	91.9	203.7	83.7	158.2	565.3	536.6	17.8	0.440		7.82			235.72 213.76	30.03 27.04	55.28 50.08	-	1552.6 1554.7				7.822 7.877	-0.148 -0.060	60.2 60.4	588 604			0.071
227 18 Nov 02 15:05:25 15-06-00-86.5 228 18 Nov 02 15:18:54 15-06-00-82.8		42.8 42.4	103.3 101.6	92.9 90.4	83.6 83.0	90.8 89.7	199.9 195.2	82.7 82.6	157.4 157.3	583.1 590.1	548.2 555.8	17.9 17.7	0.432		7.65			192.29	25.03	44 99	-	1551.5				7.654	-0.091	60.0	635			0.071
229 18 Nov 02 15:26:03 15-06-00-79.2		42.4	100.4	87.4	80.3	86.9	192.0	79.8	156.2	603.4	568.7	17.7	0.438		7.77			171.06	21.94	39.83	-	1552.7			14.34	7.770	-0.145	60.0	658	136	52.0	0.072
230 18 Nov 02 15:33:49 15-06-00-75.9		42.5	99.1	85.0	79.5	85.3	191.2	78.1	155.9	622.5	582.9	17.7	0.440					152.50	19.49	35.45	-	1553.0			14.35		-0.093	60.0	679			0.072
231 18 Nov 02 15:41:19 15-06-00-71.7		42.6	98.8	84.2	79.5	85.3	190.5	78.8	157.8	654.9	606.5	17.6	0.444		7.82		127.66	128.11 310.95	16.32	29.78	-	1550.7 1539.7		10.40	14.35	7.820	-0.110 0.120	59.7 61.4	708 601			0.072
232 22 Nov 02 15:31:06 15-06-00-97.9 233 22 Nov 02 15:40:12 15-06-15-97.9		29.7 28.7	94.8 97.3	90.6 95.5	89.4 91.1	89.3 91.3	168.9 176.1	74.3 75.1	142.3 143.6	528.0 511.5	494.5 486.8	18.0 17.7	0.435	2.73			310.43 309.67	310.95	65.46	73.26 73.30	102.17	1551.3				4 731	3.031	60.0	1720			0.071
234 22 Nov 02 15:48:36 15-06-15-96.3		28.6	98.8	103.3	90.2	91.8	178.1	76.4	144.8	519.5	490.3	17.8	0.431		7.65		289.04	289.50		68.30	98.04	1551.8		13.97	14.40	4.704	2.948	60.1	1709	14580	41.6	0.071
235 22 Nov 02 15:54:38 15-06-14-93.1		28.2	99.4	105.6	91.3	92.3	179.9	75.7	145.9	535.3	505.1	17.8	0.429	2.30			262.48	262.89		62.15	90.33	1550.4				4.734	2.906	60.3	1727			0.071
236 22 Nov 02 16:01:46 15-06-14-89.6		28.3	99.9	107.0	92.0	92.0	181.6	75.7	147.0	551.6	519.6	17.9	0.425	2.02			229.05 208.32	229.41	48.36 45.00	54.30 49.35	80.20 72.01	1549.3 1549.8			14.40	4.736	2.856 2.893	60.5 60.9	1744 1796	13743 13409		0.070
237 22 Nov 02 16:07:52 15-06-13-86.2 238 22 Nov 02 16:14:23 15-06-13-82.9		28.3 28.2	100.8 101.1	107.8 108.3	91.5 91.1	91.8 91.1	184.1 185.3	76.3 76.1	148.3 148.4	559.4 567.0	529.8 536.1	18.0 17.8	0.419	1.70			185.72	186.01		49.35	65.98	1551.3				4.526	2.815	60.4	1831			0.071
239 22 Nov 02 16:19:58 15-06-11-79.4		27.9	101.3	108.8	90.7	91.2	185.4	76.0	149.2	583.2	551.3	17.7	0.413	1.50	7.31		163.46	163.72		38.67	58.18	1551.2			14.40		2.809	59.9	1878	11399	42.0	0.071
240 22 Nov 02 16:25:22 15-06-10-75.4		27.9	101.6	109.2	90.7	90.8	186.0	75.7	149.9	607.2	567.3	17,6	0.415	1.27	7.30		138.55	138.77		32.78	49.10	1550.4			14.40		2.822	59.6	1878			0.071
241 22 Nov 02 16:32:22 15-06-09-72.5		32.4	101.6	109.6	92.0	90.7	187.3	75.6	152.0	638.3	593.9	17.7	0.421		7.45		123.57	123.82		72.66	43.65 51.65	1550.6 1547.8		10.51	14.40	1 731	2.831 6.025	60.0 59.1	1844 2680			0.070
242 25 Nov 02 14:18:10 15-06-30-97.6 243 25 Nov 02 14:23:48 15-06-28-96.5		37.6 37.5	88.4 90.8	103.2 106.3	82.1 82.8	83.4 84.8	160.7 166.7	67.4 73.7	132.9 137.2	463.7 482.1	440.4 454.7	17.4 17.6	0.445	2.61			294.02	294.68	143.43		49.33	1552.9				2.050	5,960	59.6	2692			0.071
244 25 Nov 02 14:29:17 15-06-25-93.1		37.7	96.6	109.5	87.4	93.0	174.7	82.0	149.9	498.9	478.6	17.6	0.436	2.23			261.97	262.56	146.73		44.65	1547.9				1.785	5.868	59.6	2608			0.071
245 25 Nov 02 14:34:03 15-06-26-89.7	70.5	37.2	96.6	111.2	85.6	88.3	177.3	69.4	141.2	504.9	481.2	17.6	0.451	1.89			228.99	229.50	110.71		39.08	1547.5			14,37		5.859	59.7	2762			0.071
246 25 Nov 02 14:42:38 15-06-22-86.2		37.3 37.5	99.2	112.6	87.2	91.8	181.0	75.8	149.5	518.5	493.1	17.6	0.433	1.77			207.40 186.39	207.87 186.81	119.60 94.55	48.89 43.87	35.15 31.81	1549.8 1550.5				1.734	5.901 5.860	59.7 60.7	2993 3209			0.071
247 25 Nov 02 14:46:28 15-06-19-82.9 248 25 Nov 02 14:53:19 15-06-29-79.3		37.5	98.8 103.4	113.6 116.1	86.3 91.5	88.7 96.8	182.3 190.3	71.7 74.8	145.2 157.6	534.9 578.7	505.7 546.9	17.9 17.8	0.437	1.55	7.74		156.93	157.30		37.29	26.43	1547.4				1.798	5.937	60.5	3035			0.070
249 25 Nov 02 14:59:07 15-06-37-97.6		37.9	102.0	116.6	87.8	91.5	191.8	70.8	147.0	488.3	476.8	17.6	0.459	2.46	8.09		305.06	305.77	138.57		51.78	1552.5	1.351	14.16	14.37	2.201	5.892	59.6	2626			0.071
250 25 Nov 02 15:08:53 15-12-15-97.6	70.7	37.9	100.5	107.3	90.3	93.4	194.8	72.0	176.5	939.5	851.5	35.8	0.348		12.46		305.29	306.00			619.07	1549.0				11.964	0.493	121.5	979			0.070
251 25 Nov 02 15:12:57 15-12-15-96.4		38.1	101.1	106.7	90.9	95.5	200.5	72.6	180.6	937.6	863.8	35.4	0.398		14.08		289.96	290.64	24.96	68.84 60.29	117.53 92.41	1551.7 1550.0			14.37	11,617	2.467 2.738	119.8 118.5	940 924			0.070
252 25 Nov 02 15:16:15 15-12-16-93.1 253 25 Nov 02 15:18:21 15-12-15-93.1		38.5 38.5	102.4 102.5	107.3 107.6	92.9 92.1	96.8 97.0	204.5 206.5	75.1 73.9	183.7 184.3	961.2 967.2	882.9 888.9	35.0 35.3	0.410		14.34 13.81		253.03 253.79	253.63 254.40	21.81 22.06	60.29	110.03	1546.8				11.505	2.736	119.7	610			0.070
254 25 Nov 02 15:23:12 15-12-15-89.7		38.2	103.6	108.7	91.6	97.3	211.5	75.5	191.5	1033.3	953.3	35.3	0.414		14.62		223.75	224.28	18.44	53.18	90.10	1550.3				12.135	2.483	119.7	62			0.070
255 25 Nov 02 15:30:48 15-12-15-97.7		38.2	105.0	110.7	94.6	100.9	215.4	73.4	185.3	939.2	874.6	35.2	0.399		14.06		304.22	304.94	26.33	72.73	121.19	1551.4				11.553	2.510	119.3	980			0.070
256 27 Nov 02 10:48:02 20-06-00-98.0		15.3 14.9	96.7	90.3 91.0	80.5	83.3	189.5	69.9 70.6	137.0	533.3 541.7	508.0 518.5	23.0 22.9	0.483		11.11 10.74		415.60 396.16	415.78 396.32	42.07 40.09	95.49 91.02	-	1997.8 1998.0			14.52 14.52		1.233 0.858	60.5 60.2	514 522	9	- 1,	0.073
257 27 Nov 02 10:53:40 20-06-00-96.5 258 27 Nov 02 10:59:38 20-06-00-93.0		14.9	96.6 97.1	91.0	80.3 79.9	83.5 84.0	190.7 191.6	72.0	138.8 140.5	556.9	532.2	22.9	0.433	2.55	9.83		362.86	363.01	36.90	83.29	-	1997.6			14.52		-0.036	59.7	520			0.073
259 27 Nov 02 11:03:44 20-06-00-89.6		14.9	97.1	92.1	80.8	83.9	192.1	71.4	140.8	574.6	546.2	22.7	0.439		9.98		333.92	334.06	33.91	76.80	~	1997.2			14.51	9.847	0.128	59.7	531			0.073
260 27 Nov 02 11:08:53 20-06-00-86.3	75.7	15.0	97.2	92.6	80.0	83.7	191.9	71.2	141.8	594.8	565.7	22.7	0.439	2.28			311.49	311.63	31.23	71.54	-				14.51		-0.498	59.8	530			0.073
261 27 Nov 02 11:13:48 20-06-00-82.8		14.8	97.2	92.9	80.3	83.9	193.1	72.5	143.3	616.0	583.4	22.8	0.437		9.96			283.02 251.61	28.40 24.58	65.01 57.86		1997.1 2000.7			14.51	9.962	-0.784 -0.643	59.9 60.0	538 557			0.073
262 27 Nov 02 11:28:33 20-06-00-79.3 263 27 Nov 02 11:36:12 20-06-00-76.0		14.9 14.8	99.2 99.7	94.5	81.0 81.8	85.3 86.0	197.1 197.9	71.6 72.5	146.4 148.0	650.4 675.9	618.8 639.5	22.9 22.8	0.492				227.00	227.10	24.30	52.32	-	1999.9				10.232	0.982	60.0	586			0.072
264 27 Nov 02 11:42:28 20-06-00-72.3		15.0	100.4	96.0	80.1	86.6	198.3	75.9	151.9	715.7	679.1	22.8	0.484		11.04		196.45	196.54	18.85	45.14	-	1998.4	0.841	10.49		10.424	0.612	59.9	608			0.073
265 27 Nov 02 11:45:51 20-06-00-69.1		14.9	100.4	96.2	81.2	86.6	199.1	74.7	152.3	748.1	699.7	22.8	0.499		11.36		168.74	168.81	16.08	38.85		1997.0				10.497	0.864	59.9	608			0.072
266 27 Nov 02 11:58:27 20-06-15-97.8		14.7	100.5	97.0	80.7	85.7	198.6	72.8	140.4	527.7	507.4	22.7	0.399		9.06 8.98		407.21 389.39	407.39 389.56	68.56 64.86	93.71 89.85	130.37 130.66	1999.9 1999.4				5.940 6.003	3.124 2.980	59.7 59.8	1650 1655		40.1	0.072
267 27 Nov 02 12:01:57 20-06-15-96.3 268 27 Nov 02 12:06:37 20-06-15-93.0		14.7 14.9	100.4 99.7	103.6 106.9	82.1 81.0	86.4 85.6	198.1 197.1	71.8 71.2	140.0 139.9	535.1 550.9	511.4 525.5	22.8 22.8	0.395	2.92			361.39	361.55	59.69	83.23	113.67	1999.4				6.055	3.179	59.8	1694	, , , , ,		0.072
269 27 Nov 02 12:00:37 20-00-13-93:0		14.7	99.4	108.8	81.3	85.5	196.8	73.3	141.2	567.7	539.9	22.9	0.401				333.42	333.56		76.83	104.16	2000.3			14.50	5.980	3.201	60.1	1731	15564	25.1	0.072
270 27 Nov 02 12:17:35 20-06-17-86.1		15.8	98.7	109.5	80.1	85.1	196.4	70.7	141.1	588.4	560.0	23.0	0.404	2.13			295.53	295.67		67.95	87.09	2002.6				5.904	3.393	60.3	1767			0.073
271 27 Nov 02 12:22:16 20-06-13-82.5		16.8	98.9	110.1	78.6	85.4	196.3	74.4	144.0	612.0	581.3	23.1	0.400	1.92			264.46 239.08	264.59 239.20		60.65 54.74	78.22 68.31	2002.7 2003.4				5.877 5.776	3.381 3.500	60.7 60.7	1801 1842			0.073
272 27 Nov 02 12:27:19 20-06-10-79.4 273 27 Nov 02 12:33:38 20-06-08-76.0		17.2 17.3	99.2 99.6	110.7 111.1	77.6 78.9	85.3 85.9	196.6 197.0	74.2 73.5	145.3 146.1	633.5 651.1	603.3 617.0	23.2 22.9	0.401	1.73	9.28 9.23		212.78	212.89		48.86	59.89	2003.4			14.49		3.553	60.1	1815			0.073
274 27 Nov 02 12:38:42 20-06-06-70:0		14.7	100.1	111.9	82.0	86.9	197.7	72.4	147.7	679.4	642.1	22.9	0.406				185.77	185.85		42.90	50.92	2004.3				5.638	3.648	60.0	1831			0.072
275 27 Nov 02 12:43:15 20-06-07-68.9		14.8	100.4	112.9	81.9	87.6	198.3	75.0	149.9	709.8	665.1	23.0	0.407	1.15	9.35	60.1	159.99	160.06		36.94	42.88	2003.7				5.617	3.731	60.2	1883			0.072
276 27 Nov 02 12:48:30 20-06-16-97.7		16.2	100.3	112.9	78.3	85.4	199.1	74.7	142.0	527.7	519.4	22.7	0.403	2.99	9.13	58.5	408.82	409.02	76.49	93.77	107.88	2000.2	1,740	14.17	14.49	5.344	3.790	59.5	1784	15800	26.5	0.073